Quantum measurements and maps preserving strict convex combinations and pure states
نویسندگان
چکیده
منابع مشابه
Relations Between Quantum Maps and Quantum States
The relation between completely positive maps and compound states is investigated in terms of the notion of quantum conditional probability.
متن کاملConvex Sets and Convex Combinations
Convexity is one of the most important concepts in a study of analysis. Especially, it has been applied around the optimization problem widely. Our purpose is to define the concept of convexity of a set on Mizar, and to develop the generalities of convex analysis. The construction of this article is as follows: Convexity of the set is defined in the section 1. The section 2 gives the definition...
متن کاملUnital Positive Maps and Quantum States
We analyze the structure of the subset of states generated by unital completely positive quantum maps, A witness that certifies that a state does not belong to the subset generated by a given map is constructed. We analyse the representations of positive maps and their relation to quantum Perron-Frobenius theory. PACS: 03.65.Bz, 03.67.-a, 03.65.Yz
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2013
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/46/19/195304